A Ramsey-type Result for Convex Sets
نویسندگان
چکیده
Given a family of n convex compact sets in the plane, one can always choose n of them which are either pairwise disjoint or pairwise intersecting. On the other hand, there exists a family of n segments in the plane such that the maximum size of a subfamily with pairwise disjoint or pairwise intersecting elements in n*"* ^ n-.
منابع مشابه
On Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-Triangles
We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...
متن کاملDecompositions, Partitions, and Coverings with Convex Polygons and Pseudo-triangles
We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex partitions and coverings. We establish some basic properties and give combinatorial bounds on their c...
متن کاملOn the Minimum Size of a Point Set Containing a 5-Hole and a Disjoint 4-Hole
Let H(k, l) denote the smallest integer such that any set of H(k, l) points in the plane, no three on a line, contains an empty convex k-gon and an empty convex l-gon, which are disjoint, that is, their convex hulls do not intersect. Hosono and Urabe [JCDCG, LNCS 3742, 117-122, 2004] proved that 12 ≤ H(4, 5) ≤ 14. Very recently, using a Ramsey-type result for disjoint empty convex polygons prov...
متن کاملBishop-Phelps type Theorem for Normed Cones
In this paper the notion of support points of convex sets in normed cones is introduced and it is shown that in a continuous normed cone, under the appropriate conditions, the set of support points of a bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.
متن کاملA convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کامل